首页> 外文OA文献 >Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle
【2h】

Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

机译:Ares-I载人运载火箭的动态建模和上升飞行控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares–I Crew Launch Vehicle (CLV). A complete set of six–degrees–of–freedom dynamic models of the Ares–I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA\u27s Ares–I reference model and the SAVANT Simulink–based program are utilized to develop a Matlab–based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state–space model as well as a non–minimum–phase transfer function model (which is typical for flexible vehicles with non–collocated actuators and sensors) are validated for ascent flight control design and analysis.This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical “drift–minimum” and “load–minimum“ control principles. It is shown that an additional feedback of angle–of–attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical “non–collocated actuator and sensor” control problem for large flexible launch vehicles, non–minimum–phase filtering of “unstably interacting“ bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude–error quaternion and also employs the non–minimum–phase filters, is verified by the framework of structured singular value (μ) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares–I CLV as another validation of the feasibility of the ascent flight control system design.Another important issue for a single main engine launch vehicle is stability under malfunction of the roll control system. The roll motion of the Ares–I Crew Launch Vehicle under nominal flight conditions is actively stabilized by its roll control system employing thrusters. This dissertation describes the ascent flight control design problem of Ares–I in the event of disabled or failed roll control. A simple pitch/yaw control logic is developed for such a technically challenging problem by exploiting the inherent versatility of a quaternion–based attitude control system. The proposed scheme requires only the desired inertial attitude quaternion to be re–computed using the actual uncontrolled roll angle information to achieve an ascent flight trajectory identical to the nominal flight case with active roll control. Another approach that utilizes a simple adjustment of the proportional–derivative gains of the quaternion-based flight control system without active roll control is also presented. This approach doesn\u27t require the re-computation of desired inertial attitude quaternion. A linear stability criterion is developed for proper adjustments of attitude and rate gains. The linear stability analysis results are validated by nonlinear simulations of the ascent flight phase. However, the first approach, requiring a simple modification of the desired attitude quaternion, is recommended for the Ares–I as well as other launch vehicles in the event of no active roll control.Finally, the method derived to stabilize a large flexible launch vehicle in the event of uncontrolled roll drift is generalized as a modified attitude quaternion feedback law. It is used to stabilize an axisymmetric rigid body by two independent control torques.
机译:这项研究专注于大型柔性运载火箭(如Ares–I Crew运载火箭(CLV))的动态建模和上升飞行控制。开发了一套完整的Ares-I六自由度动力学模型,其中包括其推进,空气动力学,制导和控制以及结构灵活性。 NASA的Ares-I参考模型和基于SAVANT Simulink的程序被用于开发基于Matlab的仿真和线性化工具,以独立验证大型柔性运载火箭的上升飞行控制系统的性能和稳定性。验证了线性化的状态空间模型以及非最小相位传递函数模型(这对于具有未并置的执行器和传感器的柔性车辆来说是典型的)可用于上升飞行控制设计和分析。运载火箭的飞行控制分析和设计,尤其是经典的“最小漂移”和“最小负载”控制原理。结果表明,附加的攻角反馈可以显着改善整体性能和稳定性,特别是在出现意料之外的大风扰时。对于大型柔性运载火箭的典型“非并置执行器和传感器”控制问题,“不稳定相互作用”弯曲模式的非最小相位滤波也被证明是有效的。推导了柔性运载火箭的不确定性模型。结构奇异值(μ)分析框架验证了直接控制惯性姿态-误差四元数并且还使用非最小相位滤波器的上升飞行控制系统设计的鲁棒稳定性。此外,还提供了Ares–I CLV参考模型的非线性耦合动态仿真结果,这是对上升飞行控制系统设计可行性的另一验证。单个主机发射车的另一个​​重要问题是在侧倾故障下的稳定性控制系统。 Ares-I载人运载火箭在正常飞行条件下的侧倾运动通过其采用推进器的侧倾控制系统得以有效稳定。本文描述了在侧倾控制失效或失效的情况下,战神一号的上升飞行控制设计问题。通过利用基于四元数的姿态控制系统的固有多功能性,针对此类技术难题解决了简单的俯仰/偏航控制逻辑。提出的方案仅需要使用实际不受控制的侧倾角信息重新计算所需的惯性姿态四元数,以实现与主动侧倾控制的标称飞行情况相同的上升飞行轨迹。还提出了另一种方法,该方法利用四元数飞行控制系统的比例-导数增益的简单调整而无需主动侧倾控制。这种方法不需要重新计算所需的惯性姿态四元数。为适当地调整姿态和速率增益,开发了线性稳定性标准。线性稳定性分析结果通过上升飞行阶段的非线性仿真得到验证。但是,在没有主动侧倾控制的情况下,对于Ares-I以及其他运载工具,建议采用第一种方法,该方法需要对所需的姿态四元数进行简单的修改。最后,采用这种方法来稳定大型柔性运载工具。在不受控制的情况下,侧倾漂移被概括为修正的姿态四元数反馈定律。它用于通过两个独立的控制扭矩来稳定轴对称刚体。

著录项

  • 作者

    Du, Wei;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号